Next-Generation Reading
Next-Generation Advanced Algebra and Functions
Practice Questions Based on the Accuplacer Placement Test

 Testing Center
Educational Services Building Room 108
7411 85th Avenue North
Brooklyn Park, MN 55445
Intersection of 85th Avenue and West Broadway
Phone: 763-424-0928
Email Address: testingcenter@nhcc.edu

Placement Testing Hours
Monday: 9:00 a.m. or 1:00 p.m.
Tuesday: 3:00 p.m.
Wednesday: 3:00 p.m.
Thursday: 9:00 a.m. or 1:00 p.m.
CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the Placement Test</td>
<td>Page 2</td>
</tr>
<tr>
<td>General Test and Review Information</td>
<td>Page 3</td>
</tr>
<tr>
<td>Next-Generation Reading</td>
<td>Page 4 – 11</td>
</tr>
<tr>
<td>Content Area</td>
<td>Page 4</td>
</tr>
<tr>
<td>Sample Questions</td>
<td>Page 5 – 14</td>
</tr>
<tr>
<td>Answer Key and Rationales</td>
<td>Page 15 – 21</td>
</tr>
<tr>
<td>About Math Placement Test</td>
<td>Page 22</td>
</tr>
<tr>
<td>Math Review</td>
<td>Page 23 – 48</td>
</tr>
<tr>
<td>Developmental Math</td>
<td>Page 23 – 25</td>
</tr>
<tr>
<td>NHCC’s Sample Questions</td>
<td>Page 23 – 29</td>
</tr>
<tr>
<td>NHCC Answer Key</td>
<td>Page 30</td>
</tr>
<tr>
<td>NHCC Problem Review</td>
<td>Page 30 - 39</td>
</tr>
<tr>
<td>Next Generation Advance Algebra and Functions</td>
<td>Page 40</td>
</tr>
<tr>
<td>Content Area</td>
<td>Page 40</td>
</tr>
<tr>
<td>Accuplacer’s Sample Questions</td>
<td>Page 41 - 43</td>
</tr>
<tr>
<td>Accuplacer Answer Key</td>
<td>Page 58</td>
</tr>
</tbody>
</table>
About the Placement Test

Dear Student,

Thank you for choosing to pursue your academic, professional, and personal goals here at North Hennepin Community College (NHCC). This packet contains sample questions intended to help the student review for the Arithmetic, Algebra, and College Level Math subjects of the Accuplacer.

The sample questions in this packet are intended to be one of several resources available to aid the student’s review of mathematical content. Students are encouraged to take advantage of other resources to aid review, including the websites that are listed within this packet.

We wish you success in all your endeavors here at North Hennepin Community College!

Best wishes,

Testing Center Staff

Placement

Course placement in Math courses will be at either developmental or college-level. Courses numbered 1000 or below are developmental courses designed to prepare students for success in college-level courses. Developmental credits do not apply toward a certificate, diploma, or degree. Courses numbered 1000 or above are considered college-level that meet college-level standards. College credits apply toward the requirements of a certificate, diploma, or degree.

Guidelines

Students must register for courses according to their placement or for a lower course, but not for a higher course. Students may retest only once a semester for a $10 fee. Otherwise, student must complete each course with a “C” or better before moving to the next level.

Results for the placement test will be available immediately upon completing the test. The Testing Advisor will explain test results, course placement, options to retest, and the next steps in the enrollment process. Online Orientation information Registration Session is completed following the placement test. Course registration will be completed following during a Registration Session.

Placement Test Waiver

You may be eligible for a placement test waiver, which would exempt you from taking one or more subject on the placement test. To get a copy, you may come in to our office or go to www.nhcc.edu/testing and download a copy of the Placement Test Waiver Request form, which lists documentation and criteria needed to verify eligibility for a waiver.
General Test & Review Information

How to take the placement test
➢ Apply to the college – www.nhcc.edu/admissions or in person at the Student Info Desk
➢ Schedule an appointment to take the placement test. Call 763-424-0928 to schedule an appointment. Monday 9:00 or 1:00, Tuesday 3:00, Wednesday 3:00. Thursday 9:00 or 1:00.
➢ Review! Use this study packet and other recommended resources listed below.
➢ Show up! Bring photo identification (passport, state ID, driver’s license) to your appointment, students cannot test without identification. Arrive 15 minutes early to check-in for testing. The test is not timed. It will take approximately 90 minutes to complete.

In addition to this study packet, try these other review resources:

✓ Accuplacer Study App – Create an account and log in to take “Next-Generation Practice Tests.” Select “Reading” or “Advanced Algebra and Functions” tests and use “Learn as You Go” to show the correct answer and receive rationale for the answer to each question. [https://accuplacerpractice.collegeboard.org/login].
✓ Complete Test Preparation – Includes a guide to the Next Generation Reading Comprehension: [https://www.test-preparation.ca/tips-for-reading-comprehension-questions/].
 ➢ Practice 1: [https://www.test-preparation.ca/reading-comprehension-practice-questions/].
 ➢ Practice 2: [https://www.test-preparation.ca/reading-comprehension-practice/].
 ➢ Practice 3: [https://www.test-preparation.ca/reading-comprehension-from-fiction/].
 ➢ Math: [https://www.test-preparation.ca/accuplacer/accuplacer-math/].
✓ PCCC – Online practice tests for Reading, Arithmetic, and Algebra. Includes video explanations how to solve each question. [http://accuprep.pccc.edu/].
✓ PracticeTest.com – Practice Reading, Arithmetic, Elementary Algebra, College Level Math. [http://www.accuplacerpracticetest.com/]
✓ Study Guide Zone – Practice tests for Reading and Arithmetic. Includes skill-building exercises focused on content. [https://www.studyguidezone.com/accuplacertest.htm].

Additional Math resources
✓ ARCC Math Videos – Tutorials for different topics on the Math placement test. [https://www.anokaramsey.edu/resources/tutoring-services/tutoring-services/msc-video-modules/].
✓ Math Help – Review individual content area covered in Accuplacer math tests, with online practice tests and instruction. [https://member.mathhelp.com/courses/test_prep/151].
✓ Ed Ready – Online practice tests to review topics on Accuplacer. [https://edready.org/].
✓ IXL – Review Algebra 1, Algebra 2, Geometry, and Precalculus topics. [https://www.ixl.com/math/].
The Next-Generation Reading test is a broad-spectrum computer adaptive assessment of test-takers’ developed ability to derive meaning from a range of prose texts and to determine the meaning of words and phrases in short and extended contexts. Passages on the test cover a range of content areas (including literature and literary nonfiction, careers/history/social studies, humanities, and science), writing modes (informative/explanatory, argument, and narrative), and complexities (relatively easy to very challenging). Both single and paired passages are included.

The test pool includes both authentic texts (previously published passages excerpted or minimally adapted from their published form) and commissioned texts (written specifically for the test). Questions are multiple choice in format and appear as both discrete (stand-alone) questions and as parts of sets of questions built around a common passage or passages. Four broad knowledge and skill categories are assessed:

- Information and Ideas (reading closely, determining central ideas and themes, summarizing, understanding relationships)
- Rhetoric (analyzing word choice rhetorically, analyzing text structure, analyzing point of view, analyzing purpose, analyzing arguments)
- Synthesis (analyzing multiple texts)
- Vocabulary
Directions for questions 1-18:
Read the passage(s) below and answer the question based on what is stated or implied in the passage(s) and in any introductory material that may be provided.

In this passage, an amateur theater group called the Laurel Players is putting on its first production.

(1) The Players, coming out of their various kitchen doors and hesitating for a minute to button their coats or pull on their gloves, would see a landscape in which only a few very old, weathered houses seemed to belong; it made their own homes look as weightless and impermanent, as foolishly misplaced as a great many bright new toys that had been left outdoors overnight and rained on. (2) Their automobiles didn’t look right either—unnecessarily wide and gleaming in the colors of candy and ice cream, seeming to wince at each splatter of mud, they crawled apologetically down the broken roads that led from all directions to the deep, level slab of Route Twelve. (3) Once there the cars seemed able to relax in an environment all their own, a long bright valley of colored plastic and plate glass and stainless steel—KING KONE, MOBILGAS, SHOPORAMA, EAT—but eventually they had to turn off, one by one, and make their way up the winding country road that led to the central high school; they had to pull up and stop in the quiet parking lot outside the high-school auditorium.

(4) “Hi!” the Players would shyly call to one another.

(8) Clumping their heavy galoshes around the stage, blotting at their noses with Kleenex and frowning at the unsteady print of their scripts, they would disarm each other at last with peals of forgiving laughter, and they would agree, over and over, that there was plenty of time to smooth the thing out. (9) But there wasn’t plenty of time, and they all knew it, and a doubling and redoubling of their rehearsal schedule seemed only to make matters worse. (10) Long after the time had come for what the director called “really getting this thing of the ground; really making it happen,” it remained a static, shapeless, inhumanly heavy weight; time and time again they read the promise of failure in each other’s eyes, in the apologetic nods and smiles of their parting and the spastic haste with which they broke for their cars and drove home to whatever older, less explicit promises of failure might lie in wait for them there. (11) And now tonight, with twenty-four hours to go, they had somehow managed to bring it off. (12) Giddy in the unfamiliar feel of make-up and costumes on this first warm evening of the year, they had forgotten to be afraid: they had let the movement of the play come and carry them and break like a wave; and maybe it sounded corny (and what if it did?) but they had all put their hearts into their work. (13) Could anyone ever ask for more than that?

From Richard Yates, Revolutionary Road
1. The contrasts the narrator draws in sentences 1 and 2 between the Players’ homes and the houses in the “landscape” and between the Players’ automobiles and the “roads” are most likely meant to suggest that the Players’ homes and automobiles are

A. old and neglected
B. modern and alien
C. small but expensive
D. grand but unappreciated

2. Based on the passage, which of the following most accurately characterizes the claim that “there was plenty of time to smooth the thing out” (sentence 8)?

A. A comforting falsehood that the Players know to be untrue
B. An outright lie that the director persuades the Players to accept
C. An optimistic conclusion reached by outside observers watching an early rehearsal
D. A realistic appraisal offered by the director after careful analysis of the play’s shortcomings

3. The descriptive language in sentence 10 is mainly intended to reinforce the passage’s depiction of the Players’

A. growing resentment of the director’s leadership
B. increasing reluctance to work as hard as they have been
C. lingering doubts about their fellow cast members
D. persistent mood of despair regarding the play

4. The narrator most strongly suggests that which of the following resulted in the transformation described in the last paragraph?

A. The change in time of day during which rehearsals were being held
B. The greater frequency with which rehearsals were being scheduled
C. The shift in the director’s style from strict to more forgiving
D. The break in routine occurring the day before the first performance
Passage 1

Green Bank, West Virginia, is a tech-savvy teenager’s nightmare. In this tiny town in Pocahontas County—population 143—wireless signals are illegal. No cell phones. No WiFi. No radio. No Bluetooth. No electronic transmitters at all. You’re not even allowed to cozy up to an electric blanket.

The remote town is smack in the center of the National Radio Quiet Zone, a 13,000 square mile stretch of land designated by the Federal Communications Commission to protect two government radio telescopes from human-made interference. The rules are most strict in Green Bank. So strict that a police officer roves the streets listening for forbidden wireless signals.

It’s necessary, though. The town is home to the Green Bank Telescope, the largest steerable radio telescope in the world—and arguably our most powerful link to the cosmos. Scientists there listen to radio energy that has journeyed light years, unlocking secrets about how the stars and galaxies formed. A rogue radio signal could prevent potential discoveries, discoveries that could answer big questions about how the universe ticks.

Passage 2

Lawn mowers seem to have little in common with astronomy, but they are keeping astronomers at the National Radio Astronomical Observatory up at night. A new type of robotic lawn mower has been proposed that uses beacons to train the lawn mower to stay within property lines. The beacons, placed around the yard, transmit at the same wavelength as interstellar molecules astronomers study to understand how stars form. Humans wouldn’t notice the tiny amount of energy given off by the beacons, but the Green Bank Telescope—the size of a football stadium—is so sensitive it can detect the energy given off by a snowflake as it melts. By simply mowing the lawn, a homeowner runs the risk of interfering with one of our greatest tools for studying the universe.

The manufacturer of one “lawnbot” requested a waiver to operate within the National Radio Quiet Zone. Astronomers countered with the suggestion that the beacons be reprogrammed to transmit at another wavelength not emitted by interstellar molecules. Alternately, astronomers want global positioning system (GPS) devices added to each lawnbot to prevent them from operating within the Quiet Zone.
5. The main purpose of the last paragraph of Passage 1 is to offer
 A. Criticism
 B. Justification
 C. Exemplification
 D. Comparison

6. Which conclusion can reasonably be drawn about the status of the “lawnbot” issue at the time of the writing of Passage 2?
 A. The manufacturer has received a waiver to operate within the National Radio Quiet Zone.
 B. The manufacturer has changed the wavelength at which the lawnbot’s beacons transmit.
 C. Astronomers have succeeded in getting GPS devices added to each lawnbot.
 D. The manufacturer and astronomers have yet to resolve their conflict.

7. Which choice best describes the relationship between the two passages?
 A. Passage 1 mainly discusses the National Radio Quiet Zone in general, while Passage 2 mainly discusses a particular threat to the zone’s integrity.
 B. Passage 1 focuses on Green Bank, West Virginia, while Passage 2 focuses on the National Radio Quiet Zone surrounding the town.
 C. Passage 1 evaluates drawbacks of the National Radio Quiet Zone, while Passage 2 evaluates benefits of the zone.
 D. Passage 1 offers praise for astronomers, while Passage 2 offers criticism of astronomers.

8. Given the evidence in the passages, with which statement would the authors of both passages most likely agree?
 A. Radio telescopes could be used to measure snowfall amounts.
 B. The Green Bank Telescope can detect extremely small amounts of energy.
 C. Increased sales of robotic lawn mowers may require the creation of more radio quiet zones.
 D. The lack of modern technology has made people move away from Pocahontas County.
As soon as I saw the Manhattan map, I wanted to draw it. I should be able to draw the place where I lived. So I asked Mom for tracing paper and she got it for me and I brought it into my fort and I pointed the light right down on the first map in the Hagstrom Atlas—downtown, where Wall Street was and the stock market worked. The streets were crazy down there; they didn’t have any kind of streets and avenues; they just had names and they looked like a game of Pick-Up Sticks. But before I could even worry about the streets, I had to get the land right. Manhattan was actually built on land. Sometimes when they were digging up the streets you saw it down there—real dirt! And the land had a certain curve to it at the bottom of the island, like a dinosaur head, bumpy on the right and straight on the left, a swooping majestic bottom.

9. In the passage, the use of “crazy,” “dinosaur head,” “bumpy,” “straight,” and “swooping” serve mainly to emphasize the

A. narrator’s serious approach to mapmaking
B. narrator’s frustration with drawing
C. irregularity of downtown Manhattan
D. ways in which a landscape can change over time

The life of Edith Wharton is not an inspiriting rags- to-riches saga, nor is it a cautionary tale of riches to rags—riches to riches, rather. Born Edith Newbold Jones, in January of 1862, into one of the leading families of New York, the author maintained multiple establishments and travelled in the highest style, with a host of servants, augmenting her several inheritances by writing best-selling fiction. In the Depression year of 1936, when two thousand dollars was a good annual income, her writing earned her a hundred and thirty thousand, much of it from plays adapted from her works. Yet her well-padded, auspiciously sponsored life was not an easy one. The aristocratic social set into which she was born expected its women to be ornamental, well-sheltered, intellectually idle agents of their interwoven clans, whereas Edith was an awkward, red-haired bookworm and dreamer, teased by her two older brothers about her big hands and feet and out of sympathy with her intensely conventional mother, née Lucretia Stevens Rhinelander—a mother-daughter disharmony that rankled in Edith’s fiction to the end

Adapted from John Updike, “The Changeling,” a review of the biography Edith Wharton by Hermione Lee. ©2007 by Condé Nast.
10. Which choice best describes the overall structure of the passage?

A. Biographical incidents are recounted chronologically.
B. An author’s life is connected to various themes in her work.
C. The works of two authors are compared and contrasted.
D. A list of advantages is followed by a list of disadvantages.

Bones found in South America reveal a bizarre new dinosaur. Based on an ancestry that links it to *Tyrannosaurus rex*, this reptile should have been a meat eater. Instead, it preferred plants. Researchers described the new species in *Nature*.

Its genus name—*Chilesaurus*—reflects that it was found in what’s now Chile. The team that discovered the fossils gave it a species name of *diegosuarezi* to honor Diego Suarez. While just 7 years old, Diego found the first dinosaur bones in the same general area of Chile. It’s a place known as the Toqui Formation.

C. diegosuarezi roamed South America 150 million years ago. It measured about 3 meters (roughly 10 feet) from head to tail. Its sturdy back legs, thin body and short, stout arms made it look a bit like *T. rex*. But it also had a long neck, small head and a mouth full of leaf-shaped teeth. Those gave it a *Brontosaurus*-like appearance. And like the *Brontosaurus*, it would have eaten plants, making it an herbivore.

Adapted from Ashley Yeager, “‘Frankenstein’ Dino Showed a Mashup of Traits.” ©2015 by Society for Science & the Public.

11. When the author writes that *C. diegosuarezi* “should have been a meat eater,” she most likely means that the species.

A. would have been healthier if it had eaten meat
B. would have grown even larger if it had eaten meat
C. had the head, neck, and teeth of a meat eater
D. had body features similar to those of its meat-eating relative
The first album that singer Leehom Wang bought as an adolescent was the Beastie Boys’ *Licensed to Ill*; his first concert was Heart, at the War Memorial in Rochester, New York. As for Chinese pop music, though, Wang says he recalls hearing it only once as a youngster—when his singer uncle, Li Jian-fu, paid a visit in the 1980s and played his nationalistic-patriotic hit “Descendants of the Dragon” in Wang’s living room.

Wang didn’t know it then, but he would go on to remix “Descendants of the Dragon” for a new generation, adding new lyrics about his parents’ own immigrant experience. Over the last decade, Wang’s songs have frequently emphasized his dedication to and pride in his Chinese heritage—themes that reflect his personal journey and have a powerful commercial appeal, particularly on the mainland.

At the same time, Wang has demonstrated a strong interest in incorporating traditional Chinese music and instruments into his hip-hop and R&B-based tunes.

Adapted from Julie Makinen, “Can Leehom Wang Transcend China and America’s Pop Cultures?” ©2014 by Los Angeles Times.

12. The second paragraph marks a shift in the passage from a discussion of Leehom Wang’s

A. family members to Leehom Wang himself
B. early musical influences to his later musical career
C. interest in the United States to his interest in China
D. fondness for pop music to his fondness for traditional music

Technology has scrambled the lines between public and private. Cellphones make our most intimate conversations available to anyone within earshot, while headphones create zones of pure solitude even in the midst of the liveliest crowd. Smartphones and tablets allow us to spend time with art without ever leaving the office, while sophisticated new robots enable people who are house-bound to participate in live events remotely.

Adapted from Philip Kennicott, “How to Act in Public Spaces in a Digital Age.” ©2015 by the Washington Post.

13. Which of the following would be most similar to the examples the author provides in the passage?

A. A person’s confidential information is compromised because that person left some papers in a public place.
B. A person enjoys numerous television programs, so that person buys a sophisticated new television on which to watch them.
C. A person’s unfiltered first reaction to a major event becomes widely known because that person posts it online.
D. A person wants to keep a record of his or her private thoughts, so that person secretly starts keeping a daily journal
Construction management is ideal for someone who has a general interest in building and design. Working as a construction manager affords the chance to learn a construction project from the planning stage with architects and engineers, to the budgeting stage with cost estimators, to the production stage with laborers. And that’s just a small taste of the job’s duties: Construction managers also obtain work permits, hire contractors, troubleshoot emergencies, schedule walkthroughs and keep clients informed on work timetables and progress.

Adapted from “Best Construction Jobs: Construction Manager.” ©2015 by U.S. News & World Report LP.

14. The passage most strongly emphasizes which aspect of the job of construction management?
A. The variety of its responsibilities
B. The educational background it requires
C. The kind of person for whom it is suitable
D. The amount of stress it inflicts

In this passage, “serialization” refers to the publication of installments, or parts, of an ongoing story in a newspaper or magazine.

The Pickwick Papers (1836-7) wasn’t the original serialized novel—the format had existed for at least a century prior—but it was the work that truly popularized the form. The first installment had a print order of 1,000 copies; by the time the final entry was published, circulation had reached 40,000. Buoyed by the success of Pickwick, Charles Dickens serialized his work for the rest of his career, and scores of other notable Victorian novelists joined the publishing craze. William Makepeace Thackeray’s Vanity Fair, Wilkie Collins’s The Woman in White and Arthur Conan Doyle’s Sherlock Holmes stories all emerged as serials. Old and new magazines, such as Blackwood’s and Household Words, competed for established and emerging voices. The constant influx of unresolved plots and elliptical section breaks stoked a fervor for fiction in Victorian England. It wasn’t until book production became cheap and easy, and new mediums such as radio arose to fill leisure time, that serialization slowly shriveled away.

Adapted from Hillary Kelly, “Bring Back the Serialized Novel.” ©2015 by the Washington Post

15. Which of the following does the author offer as evidence to support the point that, for a time, serialization was highly successful?
A. The change in circulation for The Pickwick Papers
B. The use of unresolved plots and elliptical section breaks
C. The decrease in cost of book production
D. The development of new mediums, such as radio
The neighborhood of Harlem in the twenties offered up a cultural richness that made everything seem possible. Jervis Anderson, writing in the *New Yorker* in 1981, noted, “Harlem has never been more high-spirited and engaging than it was during the nineteen-twenties. Blacks from all over America and the Caribbean were pouring in, reviving the migration that had abated toward the end of the war—word having reached them about the ‘city,’ in the heart of Manhattan, that blacks were making their own.”

16. Based on the passage, Anderson puts “city” in quotation marks most likely to

A. introduce irony into his writing
B. signal a nonliteral usage
C. mark a citation of another author
D. indicate the inclusion of dialogue

Certainly, scholars are driven toward a “regression to the safe,” as science historian Alice Dreger puts it, though that is not, as she implies, particularly new in the Internet age. Since Galileo’s time, thinkers have relied on the patronage of others to fund their work, and that patronage—be it from government, business interests or individuals—generally extracts a price. In Galileo’s case, that meant softening his position on the Copernican theory under pressure from the pope. In the case of science today, despite Dreger’s argument, that pressure comes less as a consequence of political correctness than of economic forces that have shifted academic and scientific institutions to a corporate model not designed to prioritize public interests. In the academy, it is money far more than ideology that rules the day.

17. It can reasonably be concluded from the passage that in the author’s opinion, scientific research today is chiefly impaired by the

A. influence of the academic institutions with which scientists are affiliated
B. overabundance of information available to scientists in the Internet age
C. pressure on scientists to make their outcomes socially acceptable
D. operation of economic forces potentially hostile to the common good

© 2017 The College Board

ACCUPLACER Next-Generation Reading
Sherry Turkle of the Massachusetts Institute of Technology has been writing about human-technology interactions for the past three decades. She has become increasingly wary of the capacity of online spaces to fulfill us in the ways we seem to want them to. According to Turkle, part of the problem with the internet is that it encourages self-invention. “At the screen,” she writes in Alone Together (2011), “you have a chance to write yourself into the person you want to be and to imagine others as you wish them to be, constructing them for your purposes. It’s a seductive but dangerous habit of mind.”

18. The main purpose of the passage is to
 A. evaluate conflicting assessments
 B. present a sharp critique
 C. propose a necessary remedy
 D. provide background details

Directions for questions 19-20

The following sentence has a blank indicating that something has been left out. Beneath the sentence are four words or phrases. Choose the word or phrase that, when inserted in the sentence, best fits the meaning of the sentence as a whole.

19. Deciding that none of the nominees was ____________ the award, the film committee began reviewing a new group of candidates with better qualifications.
 A. known for
 B. pleased with
 C. worthy of
 D. interested in

20. Nuclear engineer Meena Mutyala argues that nuclear power is an environmentally - ____________ technology, operating with essentially no emissions.
 A. lavish
 B. culpable
 C. antagonistic
 D. benign
Reading Comprehension Answer Key

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Rationales

1. **Choice B is the best answer.** Sentence 1 notes that in the “landscape,” “only a few very old, weathered houses seemed to belong”; by contrast, the Players’ houses seemed “weightless,” “impermanent,” and “misplaced,” like “bright new toys.” Sentence 2 establishes that the Players’ automobiles “didn’t look right either,” that they appeared “unnecessarily wide and gleaming in the colors of candy and ice cream,” that they seemed “to wince at each splatter of mud,” and that they “crawled apologetically down the broken roads.” Choice A is incorrect because the Players’ homes and automobiles are neither old nor neglected; in fact, the passage indicates that the homes and automobiles are modern in relation to the “landscape” and “roads” (sentences 1-2) and that the automobiles are “gleaming” (sentence 2). Choice C is incorrect because the Players’ homes and automobiles are not small; for one thing, the automobiles are “unnecessarily wide” (sentence 2). Choice D is incorrect because there is no evidence in the passage that the Players’ homes and automobiles are unappreciated.

2. **Choice A is the best answer.** Sentence 9 establishes, in contrast to what is stated in sentence 8, that “there wasn’t plenty of time” and that the Players “all knew it.” Despite knowing better, the Players use the claim as part of the strategy described in sentence 8 to lighten the tense mood (“disarm each other,” “forgiving laughter”). Choice B is incorrect because the passage suggests that the source of the claim was the Players themselves, not the director. Choice C is incorrect because no outside observers are mentioned in the passage. Choice D is incorrect because the passage suggests that the source of the claim was the Players themselves, not the director, and because the claim is false, not realistic.
3. Choice D is the best answer. The descriptive language of sentence 10—notably, “static,” “shapeless,” “inhumanly heavy weight,” “promise of failure,” “apologetic nods and smiles,” “spastic haste,” “less explicit promises of failure”—serves primarily to convey a persistent mood of despair on the part of the Players toward the play. Choice A is incorrect because there is no evidence in the passage that the Players blame the director for the problems with the play. Choice B is incorrect because the passage indicates that the Players have relatively recently undertaken “a doubling and redoubling of their rehearsal schedule” (sentence 9). Choice C is incorrect because there is no evidence in the passage that the Players blame one another for the problems with the play; instead, they share a generalized sense of failure.

4. Choice D is the best answer. Sentence 10 indicates that the play “remained a static, shapeless, inhumanly heavy weight” even after numerous rehearsals. “With twenty-four hours to go,” however, the Players “had somehow managed to bring it off” (sentence 11). The narrator goes on to suggest that something about the break in routine near the very end of the rehearsal period was responsible. Feeling “giddy in the unfamiliar feel of make-up and costumes,” the Players “had forgotten to be afraid”; instead, “they had let the movement of the play come and carry them and break like a wave” and “had all put their hearts into their work” (sentence 12). Choice A is incorrect because the passage does not clearly indicate the time of day during which prior rehearsals were held, and it seems likely, given the intensifying schedule (“doubling and redoubling,” sentence 9), that at least some prior rehearsals had taken place at night. Choice B is incorrect because sentence 9 asserts that the “doubling and redoubling” of the rehearsal schedule “seemed only to make matters worse.” Choice C is incorrect because there is no evidence in the passage that the director changed his or her style.

5. Choice B is the best answer. The first two paragraphs of Passage 1 describe what might seem like extremely harsh restrictions on wireless transmissions: “no electronic transmitters at all,” “you’re not even allowed to cozy up to an electric blanket,” “a police officer roves the streets listening for forbidden wireless signals.” The last paragraph of Passage 1 serves mainly to offer justification: the restrictions are “necessary” because “the town is home to the Green Bank Telescope,” and “a rogue radio signal could prevent potential discoveries.” Choice A is incorrect because the last paragraph of Passage 1 does not take a critical tone toward the electronics restrictions in Green Bank, instead describing them as “necessary.” Choices C and D are incorrect because no example is being given nor is a comparison being made; the whole passage is about Green Bank and its electronics restrictions.
6. **Choice D is the best answer.** Passage 2 indicates that the manufacturer of one “lawnbot” had “requested a waiver to operate within the National Radio Quiet Zone” and that astronomers had “countered with the suggestion that the beacons be reprogrammed” or that “global positioning system (GPS) devices” be “added to each lawnbot.” However, Passage 2 offers no evidence that the two sides have come to any resolution. Choice A is incorrect because while the manufacturer of one “lawnbot” had “requested a waiver to operate within the National Radio Quiet Zone,” there is no evidence in Passage 2 that the manufacturer received such a waiver. Choice B is incorrect because while astronomers had “countered with the suggestion that the beacons be reprogrammed to transmit at another wavelength,” there is no evidence in Passage 2 that the manufacturer reprogrammed the lawnbots. Choice C is incorrect because while astronomers had suggested that “global positioning system (GPS) devices” be “added to each lawnbot,” there is no evidence in Passage 2 that GPS devices have been installed.

7. **Choice A is the best answer.** Passage 1 mainly focuses on describing the National Radio Quiet Zone in general terms: “no electronic transmitters at all,” “a 13,000 square mile stretch of land” intended to “protect two government radio telescopes from human-made interference,” “a rogue radio signal could prevent potential discoveries.” Passage 2 mainly focuses on describing one particular threat to the zone’s integrity: the “lawnbot” that “transmit[s] at the same wavelength as interstellar molecules astronomers study to understand how stars form.” Choice B is incorrect because Passage 1 is only incidentally about Green Bank (as it just happens to be “smack in the center of the National Radio Quiet Zone”) and because describing the National Radio Quiet Zone in general terms is better considered the main focus of Passage 1, not Passage 2. Choice C is incorrect because the drawbacks of the National Radio Quiet Zone are not the main focus of Passage 1 (the author refers to the restriction as “necessary,” for example) and because the benefits of the zone are not the main focus of Passage 2. Choice D is incorrect because neither passage focuses mainly on either praising or criticizing astronomers.

8. **Choice B is the best answer.** Passage 1 notes that the Green Bank Telescope is vulnerable to “human-made interference” and that even “a rogue radio signal could prevent potential discoveries.” Passage 2 describes the telescope as “so sensitive it can detect the energy given off by a snowflake as it melts.” Choice A is incorrect because only Passage 1 mentions the Green Bank Telescope being able to “detect the energy given off by a snowflake as it melts,” and that passage does not suggest that such measurement would be a proper role for the telescope, which is instead designed to help astronomers “understand how stars form.” Choices C and D are incorrect because there is no evidence in either passage that increased sales of robotic lawn mowers may require the creation of more radio quiet zones or that people have been moving away from Pocahontas County.
9. **Choice C is the best answer.** The narrator uses all of the listed words and phrases to convey the irregularity of downtown Manhattan: its streets are “crazy,” and the land has “a certain curve to it at the bottom of the island, like a dinosaur head, bumpy on the right and straight on the left, a swooping majestic bottom.” Choices A and B are incorrect because the listed words and phrases are about downtown Manhattan, not about the narrator’s approach to mapmaking or attitude toward drawing. Choice D is incorrect because the passage does not describe how a landscape can change; everything presented in the passage occurs over a relatively short period of time.

10. **Choice D is the best answer.** The passage begins by listing some of the advantages Wharton enjoyed: being born into “one of the leading families of New York,” maintaining “multiple establishments,” traveling “in the highest style, with a host of servants,” having “several inheritances,” being the author of “best-selling fiction,” and earning $130,000 in a Depression year. The passage concludes with a list of disadvantages Wharton labored under: women in her “social set” were expected to be “ornamental, well-sheltered, intellectually idle agents of their interwoven clans,” and Wharton was “awkward,” “teased” by her older brothers, and “out of sympathy with her intensely conventional mother.” Choice A is incorrect because the passage does not follow a chronological structure. Choice B is incorrect because the passage conveys only one theme of Wharton’s work (“mother-daughter disharmony”). Choice C is incorrect because the passage focuses on Wharton exclusively.

11. **Choice D is the best answer.** The author notes that the new dinosaur “should have been a meat eater” given that it had “an ancestry that links it to *Tyrannosaurus rex,*” which, the author implies, was itself a meat eater. Like the *T. rex*, *C. diegosuarezi* had “sturdy back legs,” a “thin body,” and “short, stout arms” that “made it look a bit like *T. rex.*” *C. diegosuarezi,* however, had other features that linked it to herbivores. Choices A and B are incorrect because there is no evidence in the passage that the author thinks *C. diegosuarezi* would have been healthier or would have grown even larger had it eaten meat. Choice C is incorrect because the author indicates that the “long neck,” “small head,” and “mouth full of leaf-shaped teeth” gave *C. diegosuarezi* “a *Brontosaurus*-like appearance” and that “like the *Brontosaurus*, it would have eaten plants, making it an herbivore.”
12. **Choice B is the best answer.** The first paragraph focuses mainly on Leehom Wang’s early musical influences: the first album he bought, the first concert he attended, and his relative lack of exposure to Chinese pop music. By contrast, the second and last paragraphs focus mainly on Wang’s later musical career: his updating of “Descendants of the Dragon,” the Chinese influences on the songs he has written “over the last decade,” and his ongoing interest in “incorporating traditional Chinese music and instruments into his hip-hop and R&B-based tunes.” Choice A is incorrect because the first paragraph mentions only one relative, Leehom Wang’s “singer uncle,” and because the focus of the whole passage is on Wang. Choice C is incorrect because while the first paragraph does discuss Wang’s interest in US popular culture, the second and last paragraphs discuss Wang’s interest in both his Chinese and US heritage and influences. Choice D is incorrect because while the first paragraph does discuss Wang’s fondness for pop music, the second and last paragraphs discuss Wang’s interest in both traditional and pop music.

13. **Choice C is the best answer.** The examples in the passage describe in various ways how “technology has scrambled the lines between public and private.” In choice C, what might otherwise have been a private thought has been made public through technology. Choice A is incorrect because the example does not clearly involve technology. Choice B is incorrect because the example does not clearly involve technology blurring the lines between public and private. Choice D is incorrect because the example does not clearly involve technology or the blurring of the lines between public and private.

14. **Choice A is the best answer.** The main focus of the passage is on the variety of the responsibilities of a construction manager, who must “learn a construction project from the planning stage . . . to the budgeting stage . . . to the production stage” and must “obtain work permits, hire contractors, troubleshoot emergencies, schedule walkthroughs and keep clients informed on work timetables and progress.” Choices B and D are incorrect because there is no information in the passage about the educational background required of a construction manager or about the amount of stress the construction manager career inflicts. Choice C is incorrect because there is no information in the passage about the kind of person for whom a construction manager career would be suitable beyond the broad claim that it is “ideal for someone who has a general interest in building a design.”
15. Choice A is the best answer. The author asserts that *The Pickwick Papers* “truly popularized” the form of the serialized novel, noting that the first installment had a print order of 1,000 copies and that circulation had climbed to 40,000 “by the time the final entry was published.” Choice B is incorrect because the passage indicates that unresolved plots and elliptical section breaks were merely features of serialized novels, ones that helped promote serialization’s success but were not themselves evidence of the success of serialization. Choices C and D are incorrect because the passage cites the decrease in cost of book production and the development of new mediums, such as radio, as causes of the decline of serialization (“slowly shriveled away”).

16. Choice B is the best answer. Harlem is identified in the passage as a “neighborhood” and “in the heart of Manhattan,” not an actual city, indicating that Anderson’s use of “city” is nonliteral. The passage most strongly suggests that Harlem is a “city” in the sense that it was a place that “blacks were making their own.” Choices A, C, and D are incorrect because there is no evidence in the passage that Anderson intended to introduce irony into his writing, was citing another author, or quoting dialogue.

17. Choice D is the best answer. The author contends that patronage of science “generally extracts a price” and that “in the case of science today . . . that pressure comes less as a consequence of political correctness than of economic forces that have shifted academic and scientific institutions to a corporate model not designed to prioritize public interests” and hence potentially hostile to the common good. The author concludes that “it is money far more than ideology that rules the day” in contemporary science. Choice A is incorrect because the author depicts the academic institutions with which scientists are affiliated as subject to larger “economic forces” that have shifted these institutions to “a corporate model.” Choice B is incorrect because there is no evidence in the passage that the author considers the overabundance of information available to scientists in the Internet age as the chief impairment of scientific research today or even that she sees information as overabundant. Choice C is incorrect because the idea that pressure on scientists to make their outcomes socially acceptable (“political correctness,” “ideology”) is the chief impairment of scientific research today is attributed to Alice Dreger, not to the author herself, who argues a different position “despite Dreger’s argument.”
18. **Choice B is the best answer.** The passage focuses mainly on presenting the critique of the Internet offered by Sherry Turkle, who “has become increasingly wary of the capacity of online spaces to fulfill us in the ways we seem to want them to” and feels that the Internet encourages “a seductive but dangerous habit of mind.” Choice A is incorrect because only Sherry Turkle’s assessment is presented in the passage. Choice C is incorrect because the passage does not propose a remedy; it only presents Turkle’s assessment of a problem. Choice D is incorrect because while the passage does present some details that might be considered background (e.g., that Turkle works at the Massachusetts Institute of Technology), the passage focuses mainly on Turkle’s critique of the Internet’s ability to support self-invention.

19. **Choice C is the best answer.** “Worthy of” means deserving respect or praise, which is consistent with the idea in the sentence that the film committee began looking for new candidates for the award when the original nominees proved unsatisfactory. Choices A, B, and D are incorrect because it makes no sense in context to describe unsatisfactory nominees for an award as being “known for” or “pleased with” the award (since none of them has received it) or “interested in” the award (since the nominees’ interest is irrelevant to their qualifications).

20. **Choice D is the best answer.** One definition of “benign” is “having no significant effect: harmless,” which is consistent with how “benign” is used in the sentence to refer to a technology that operates “with essentially no emissions.” Choices A, B, and C are incorrect because it makes no sense in context to refer to a technology that operates “with essentially no emissions” as “lavish” (abundant, profuse, excessive), “culpable” (deserving blame), or “antagonistic” (showing dislike or opposition).
Math Placement Test

Structure
The math placement test is designed to measure student’s understanding of content areas in Arithmetic, Algebra, Geometry, Functions and Trigonometry. The test begins with the ACCUPLACER Next Generation Advanced Algebra and Functions test, which has 20 questions, and will either place students into a College Math class based on that score, or require additional tests for placement. An Advanced Algebra and Functions score of less than 235, will start the Developmental Math test with 18 questions. An Advanced Algebra and Functions score of more than 261, will start the Calculus Readiness test with 10 questions. Test scores and placement are available immediately after completing the test. The Testing Advisor will explain test results and course placements to each student.

Guidelines
The placement test is not timed. Students are not permitted to use a personal calculator, a calculator tool on the computer or the Internet. The ACCUPLACER calculator is the only calculator students may use, and it only appears on certain questions.

A calculator button will be displayed right next to the Accessibility button on the toolbar.

The sample questions in this packet are not intended to be exhaustive, but to aid the student’s review of certain math concepts. The first set of problems was developed by faculty at NHCC, including a review section, which explains how to solve the problems. The second set of questions is from College Board, the creators of the ACCUPLACER. To aid study, external study resources and practice questions are listed on the previous page.

Students are highly encouraged to review for the math placement test before taking it. Take advantage of the resources and references provided by the Testing Center, as well as others you are aware of that may help your performance on the test.
NHCC’s Developmental Math Sample Questions

These sample questions are intended to guide you in your review of math concepts for the math placement test. **Practice the problems without a calculator**, you will not be allowed a personal calculator on the real test. Try the problems first before using the answer key at the end.

1. \[14 - 5 =\]
 a) -19 b) 11 c) -9 d) 9

2. Find the sum of: \(-4\) and \(-3\)
 a) -1 b) -7 c) 7 d) 12

3. \[\frac{3}{5} \times 4\]
 a) \(\frac{32}{5}\) b) \(1 \frac{12}{5}\) c) \(\frac{23}{5}\) d) \(\frac{32}{20}\)

4. \[\frac{9}{20} =\]
 a) 4.5 b) .18 c) .45 d) .09

5. Subtract the following fractions: \[\frac{4}{3} - \frac{5}{12} =\]
 a) \(-\frac{1}{9}\) b) \(\frac{11}{12}\) c) \(-\frac{1}{12}\) d) \(\frac{4}{15}\)
6. Subtract: \(\frac{5}{6} \) from \(\frac{7}{4} \)

 a) \(1 \) b) \(\frac{1}{12} \) c) \(\frac{11}{12} \) d) \(-\frac{3}{2} \)

7. Find the product of \(\frac{3}{8} \) and \(\frac{2}{15} \).

 a) \(\frac{1}{20} \) b) \(\frac{5}{23} \) c) \(\frac{6}{23} \) d) \(\frac{6}{15} \)

8. Find the product of \(-\frac{3}{5} \) and \(\frac{10}{7} \).

 a) \(-\frac{6}{7} \) b) \(\frac{7}{2} \) c) \(-\frac{13}{12} \) d) \(\frac{50}{21} \)

9. Find the value of: \(5 + 3 \left(2 - 6 \right) \div 2 \times 5 \)

 a) \(-80\) b) \(17\) c) \(-25\) d) \(3\)

10. Find the value of \(2 + 3 \left| 5 - 7 \right| \)

 a) \(10\) b) \(-4\) c) \(8\) d) \(-10\)
11. If a pot of soup is $\frac{2}{3}$ full before lunch and $\frac{1}{7}$ full after lunch, how much soup was used during lunch?

 a) $\frac{1}{4}$
 b) $\frac{1}{21}$
 c) $\frac{11}{21}$
 d) $\frac{1}{7}$

12. Which of the following is not equivalent to $2 \frac{4}{5}$?

 a) 2.8
 b) $\frac{8}{5}$
 c) $\frac{14}{5}$
 d) $1 \frac{9}{5}$

13. $(.35)^2$

 a) .7
 b) .1225
 c) 12.25
 d) 7

14. What percent of 30 is 6?

 a) 2%
 b) 20%
 c) 18%
 d) 5%

15. $3.2 ÷ 100 =$

 a) .032
 b) 320
 c) .32
 d) .0032
16. \[5.7 + 3.6 - 1.4 = \]

a) 10.2

b) 7.3

c) 7.9

d) 8.3

17. If a shirt costs $24.47 and a pair of pants costs $27.78, what is the cost if you buy both items?

a) $52.25

b) $51.45

c) $41.25

d) $52.35

18. 21% of 78,456 is closest to:

a) 200

b) 86,000

c) 160,000

d) 16,000

19. If 1 car weighs 2 tons and 1 semi weighs 12 tons, what is the ratio of the weight of 5 cars to 2 semis?

a) 2:5

b) 5:2

c) 5:12

d) 1:6

20. If the length of a rectangle is 14 meters, and the width is 5 meters less than the length, what is the perimeter of the rectangle?

a) 23 meters

b) 46 meters

c) 39 meters

d) 70 meters
21. If \(3x = \frac{5}{2} \), find the value of \(x \)

 a) 5
 b) \(\frac{6}{5} \)
 c) \(\frac{15}{2} \)
 d) \(\frac{5}{6} \)

22. Place the numbers in ascending order (from smallest to largest) \{ \frac{5}{4}, \frac{11}{12}, 1\frac{1}{3}, \frac{5}{6} \}

 a) \{\frac{5}{4}, 1\frac{1}{3}, \frac{11}{12}, \frac{5}{6}\}
 b) \{\frac{5}{6}, \frac{5}{4}, \frac{11}{12}, 1\frac{1}{3}\}
 c) \{\frac{11}{12}, \frac{5}{6}, \frac{5}{4}, 1\frac{1}{3}\}
 d) \{\frac{5}{6}, \frac{11}{12}, \frac{5}{4}, 1\frac{1}{3}\}

23. What is the value of \(3x^2 - 2xy + y^2 \) when \(x = -2 \) and \(y = 3 \)?

 a) 9
 b) 33
 c) 6
 d) 26

24. Simplify: \(\frac{x^2-x-6}{x^2-9} \)

 a) \(\frac{x+2}{x+3} \)
 b) \(\frac{x+6}{9} \)
 c) \(\frac{x-3}{x} \)
 d) \(\frac{x+6}{x-9} \)

25. A rectangular garden is to be made with a perimeter of 54 meters. If the width is five meters less than the length, what are the dimensions of the garden?

 a) 24m by 30m
 b) 12m by 17m
 c) 6m by 9m
 d) 11m by 16m
26. \((2a - 3)(a + 3) =\

\begin{align*}
a) & \ 2a^2 - 9 \\
b) & \ 2a^2 + 3a - 9 \\
c) & \ 5a^3 - 9 \\
d) & \ 2a^2 - 9a - 6 \\
\end{align*}

27. Solve the equation: \(x^2 + 3x = 18\)

\begin{align*}
a) & \ {-6, 3} \\
b) & \ {2, -9} \\
c) & \ {4, 3} \\
d) & \ {6, 2} \\
\end{align*}

28. Find the sum of \(3x + 2\) and \(4 - x + x^2\)

\begin{align*}
a) & \ 4x + 6 \\
b) & \ x^2 + 8x \\
c) & \ x^2 + 2x + 6 \\
d) & \ 5x^2 + x + 2 \\
\end{align*}

29. Solve the inequality: \(-3(x - 2) < x - \frac{3}{2}\)

\begin{align*}
a) & \ \{x|x < 2\} \\
b) & \ \{x|x > \frac{1}{2}\} \\
c) & \ \{x|x > \frac{15}{8}\} \\
d) & \ \{x|x < \frac{5}{2}\} \\
\end{align*}

30. Simplify and add the radicals: \(\sqrt{75} + \sqrt{27}\)

\begin{align*}
a) & \ 8\sqrt{3} \\
b) & \ \sqrt{102} \\
c) & \ 34\sqrt{3} \\
d) & \ 8\sqrt{6} \\
\end{align*}
31. Evaluate \(\frac{5}{4^2} \)

\[\begin{array}{cccc}
\text{a) } 10 & \text{b) } 90 & \text{c) } 16 & \text{d) } 32 \\
\end{array} \]

32. Which line has a slope of \(\frac{1}{2} \)?

\[\begin{array}{cccc}
a) & b) & c) & d) \\
\end{array} \]

33. Subtract: \(\frac{3x}{y} - \frac{2}{x} \)

\[\begin{array}{cccc}
a) \frac{3x^2 - 2y}{xy} & b) \frac{3x - 2}{xy} & c) \frac{3x - 2}{y - x} & d) \frac{x}{y - x} \\
\end{array} \]

34. Two angles are supplementary. If the larger angle is 20° more than three times the smaller, find the measure of each angle.

\[\begin{array}{cccc}
a) 85°, 275° & b) 40°, 140° & c) 15°, 75° & d) 60°, 120° \\
\end{array} \]

35. Write the phrase “the difference of a number and twice the square of a number” as a simplified algebraic expression.

\[\begin{array}{cccc}
a) x^4 - 2 & b) 3x & c) x - 2x^2 & d) x^2 - 2x \\
\end{array} \]

29
NHCC’S Sample Questions Answer Key

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Problem Review

1. Answer: D) 9
Content Area: Subtracting integers

When subtracting integers, you want to think of moving on a number line. Starting at positive 14 which lies to the right of zero, to subtract 5, you move to the left five units and you end up at a positive 9.

2. Answer: B) -7
Content Area: Adding Integers

When you add numbers you can visualize a number line with negative numbers to the left and positive numbers to the right. If you start at the location -3 and add -4 to it you move 4 units to the left (since it is negative), so you end up at -7.

3. Answer: A) \(\frac{32}{5} \)
Content Area: Mixed Numbers, Multiplying Fractions

When multiplying or dividing mixed numbers, we need to turn them into improper fractions first. If you multiply the whole number portion by the denominator and add it to the numerator, you will have the improper fraction equivalent. \(1 \frac{3}{5} = \frac{1 \times 5 + 3}{5} = \frac{8}{5} \)

To multiply a fraction by a whole number, put the whole number over 1 and multiply straight across.

\[
\frac{8 \times 4}{5 \times 1} = \frac{8 \times 4}{5} = \frac{32}{5}
\]
4. **Answer:** C) \(0.45\)

Content Area: Division

To find the decimal value of a fraction, divide the numerator by the denominator. You can use long division, or in this case you can notice that if you multiply the top and the bottom by 5, the denominator of the fraction will be 100, which is easily converted into a decimal if you remember that when you divide by 100 you move the decimal in the numerator two places to the left.

\[
\frac{9}{20} = \frac{9 \times 5}{20 \times 5} = \frac{45}{100} = 0.45
\]

5. **Answer:** B) \(\frac{11}{12}\)

Content Area: Subtracting fractions

To subtract (or add) fractions we need to make sure that we have common denominators. We can multiply the numerator and denominator by the same number so that the fractions have the same denominator, then we can subtract the numerators and put it over the common denominator.

\[
\frac{4}{3} - \frac{5}{12} = \frac{4 \times 4}{3 \times 4} - \frac{5}{12} = \frac{16}{12} - \frac{5}{12} = \frac{11}{12}
\]

6. **Answer:** C) \(\frac{11}{12}\)

Content Area: Subtracting Fractions, Finding the Least Common Denominator, translating phrases.

When the question asks you to subtract \(\frac{5}{6}\) from \(\frac{7}{4}\) it means \(\frac{7}{4} - \frac{5}{6}\).

You need to know that to subtract (or add) fractions they need to have a common denominator. If you multiply the top and bottom of a fraction by the same value, you don’t change the value of the fraction. So to create a common denominator, factor the denominators so you can see what factor(s) each fraction is missing, and add those missing factors. You can then subtract the numerators and put the answer over the common denominator.

\[
\frac{7}{2 \cdot 2} - \frac{5}{2 \cdot 3} = \frac{7 \cdot 3}{2 \cdot 2 \cdot 3} - \frac{5 \cdot 2}{2 \cdot 2 \cdot 3} = \frac{21 - 10}{2 \cdot 2 \cdot 3} = \frac{11}{12}
\]
7. **Answer: A) \(\frac{1}{20} \)

To find the product means to multiply, and to multiply we just multiply “straight across”. Make sure to reduce your final answer by cancelling any common factors.

\[
\frac{3}{8} \times \frac{2}{15} = \frac{3 \times 2}{8 \times 15} = \frac{3 \times 2}{2 \times 4 \times 3 \times 5} = \frac{1}{4 \times 5} = \frac{1}{20}
\]

8. **Answer: A) \(\frac{-6}{7} \)

When you multiply fractions, you multiply the numerators (top) together and put your answer over the product of the denominators (bottom). You then need to reduce the fraction by canceling any common factors between the numerator and denominator. Remember that the product of a positive number and a negative number is always negative.

\[
\frac{-3}{5} \times \frac{10}{7} = \frac{-30}{35} = \frac{-5 \cdot 6}{5 \cdot 7} = \frac{-6}{7}
\]

9. **Answer: C) \(-25\)

When you see a list of operations and parentheses you must perform the operations in the correct order. Always start with any operations inside the parentheses first, and then apply any exponents. (There aren’t any in this problem) Next perform multiplication and division as they appear from left to right, and finally addition and subtraction in order from left to right.

\[
\begin{align*}
5 + 3(2 - 6) & ÷ 2 \cdot 5 \quad \text{Subtraction inside Parentheses First} \\
5 + 3(-4) & ÷ 2 \cdot 5 \quad \text{Multiplication} \\
5 + (-12) & ÷ 2 \cdot 5 \quad \text{Division} \\
5 + (-6) & \cdot 5 \quad \text{Multiplication} \\
5 + (-30) & \quad \text{Addition} \\
-25 & \quad \text{Addition}
\end{align*}
\]
10. Answer: C) 8

Content Area: Order of Operations, Absolute Value

To evaluate this expression, we must first perform the operations inside of the absolute value symbols (just like parentheses). Remember that the absolute value of a number represents the distance from that number to zero so the absolute value is always positive. Make sure that you wait to add the 2 and the 3 until after you multiply the 3 because multiplication comes before addition.

\[
\begin{align*}
2 + 3 |-5 - 7| = \\
2 + 3 |-2| = \\
2 + 3 \cdot 2 = \\
2 + 6 = \\
8
\end{align*}
\]

11. Answer: C) \(\frac{11}{21} \)

Content Area: Fractions

To find the remaining soup we need to subtract the remaining portion, \(\frac{1}{7} \) from the starting portion, \(\frac{2}{3} \). Remember to create common denominators before subtracting, like problem 4.

\[
\begin{align*}
\frac{2}{3} - \frac{1}{7} &= \frac{2 \times 7}{3 \times 7} - \frac{1 \times 3}{7 \times 3} = \frac{14}{21} - \frac{3}{21} = \frac{11}{21}
\end{align*}
\]

12. Answer: B) \(\frac{8}{5} \)

Content Area: Mixed numbers, Decimals

When we look at the four options, we see first that \(\frac{4}{5} = .8 \), so \(2 \frac{4}{5} = 2.8 \).

Secondly, as an improper fraction, \(2 \frac{4}{5} = \frac{2 \times 5 + 4}{5} = \frac{14}{5} \neq \frac{8}{5} \).

Finally, if we take one whole number away, and put it with the fractional portion, we would get \(1 \frac{\text{1x5+4}}{5} = 1 \frac{9}{5} \), so b) is the only unequal value.

13. Answer: B) .1225

Content Area: Multiplying decimals

The exponent (in this case 2) tells you how many times to multiply the base (.35) by itself. To multiply decimals, it is easiest to do this vertically, and to multiply 35 by 35 and add move the decimal four places to the left at the end.

\[
\begin{align*}
.35 \\
\times .35 \\
175 \\
105 \\
.1225
\end{align*}
\]
14. Answer: B) 20%

Content Area: Percentage word problems

To answer this problem we want to set up an equation and solve it. We are looking for the percentage, which can be found by thinking of \(\frac{\text{percentage}}{100} \). In the problem “of” means to multiply, and “is” means equals. Putting this all together “what percentage of 30 is 60” becomes the equation \(\frac{x}{100} \times 30 = 6 \).

Then to get \(x \) alone, multiply by 100 and divide by 30. \[x = \frac{6 \times 100}{30} = \frac{600}{30} = \frac{60}{3} = 20 \]

15. Answer: A) .032

Content Area: Dividing decimals

To divide by 10, 100, 1000, etc, move the decimal point of the numerator to the left the number of zeros. (The opposite works with multiplication by a power of 10; move the decimal to the right)

\[\frac{3.2}{100} = .032 \]

16. Answer: C) 7.9

Content Area: Adding/Subtracting decimals

When adding decimals, make sure to keep everything lined up, and add just like whole numbers. Borrow digits if you need to perform the subtraction

\[\frac{5.7}{+ 3.6} \rightarrow \frac{9.3}{- 1.4} = \frac{8.13}{7.9} \]

17. Answer: A) $52.25

Content Area: Adding Money

This problem is much like number 11 above. Be sure to keep track of the decimal place, and line up the correct values.

\[\frac{24.47}{+ 27.78} \rightarrow \frac{52.25}{52.25} \]
18. Answer: D) 16,000

Content Area: Approximation

This is a hard problem to do directly, but since we only need to approximate the answer, we can think of 78,456 as being 80,000 and as 21% as 20%. Then our multiplication problem becomes much easier.

\[
\frac{80,000 \times \text{20\%}}{16,000} = \frac{80,000 \times 0.2}{16,000}
\]

19. Answer: C) 5:12

Content Area: Rate/Ratio

First we need to figure out the weight of 5 cars which is \(5 \times 2 = 10\) tons. The weight of 2 semis is \(2 \times 12 = 24\) tons. When creating ratios, always list the two pieces in order, separated by a colon, and reduce the ratio just like a fraction.

\[
10 : 24 = 5 \cdot 2 : 12 \cdot 2 = 5 : 12
\]

20. Answer: B) 46

Content Area: Geometry problem

To solve this geometry problem you need to know that the perimeter is the distance around the shape. If the width is 5 less than 14, then the width is 9 meters. Around a rectangle are two lengths and two widths, so the perimeter is \(14 + 14 + 9 + 9 = 46\).

21. Answer: D) \(\frac{5}{6}\)

Content Area: Solving equations/fractions

With equations we have the option to multiply (or divide) both sides by any non-zero quantity or we can add (or subtract) both sides by the same quantity without changing the solutions. This is important since it allows us to rewrite equations in a form that we prefer. The best form is to get the variable alone as in \(x = \square\), since then we can easily see the solution.

For this problem we can get the x term alone by dividing both sides by 3. To divide the right side by 3, remember that dividing means multiplying by the reciprocal. This gives us the solution.
22. Answer: D) \{ \frac{5}{6}, \frac{11}{12}, \frac{5}{4}, \frac{1}{3} \}

Content Area: Fractions

To compare fractions we need to create common denominators. The Least Common Denominator of all the fractions is 12. To convert the mixed number to a fraction multiply the denominator by the whole number and add it to the numerator. The four fractions can then be grouped in the right order.

\[
\begin{align*}
\frac{5 \cdot 2}{6 \cdot 2} &= \frac{10}{12} \\
\frac{11}{12} &= \frac{11}{12} \\
\frac{5 \cdot 3}{4 \cdot 3} &= \frac{15}{12} \\
\frac{1}{3} &= \frac{1 \cdot 4 \cdot 4}{3 \cdot 4} = \frac{16}{12}
\end{align*}
\]

23. Answer: B) 33

Content Area: Evaluating expressions

To evaluate an expression we must replace each variable with the given value. Be careful with negative values.

The problem states that \[x = -2\text{ and } y = 3\] so:

\[
3x^2 - 2xy + y^2 = 3(-2)^2 - 2(-2)(3) + (3)^2 = 3 \cdot 4 + 12 + 9 = 33
\]

24. Answer: A) \(\frac{x+2}{x+3} \)

Content Area: Factoring quadratics

Simplifying rational expressions

To simplify a rational expression you need to cancel any common factors (products). To see what the common factors are you need to factor the top and the bottom of the fraction. Only then can you see what factors are common and cancel them to get our final answer.

Remember that quadratics often factor as the product of two binomials. For more help factoring polynomials see the web sites.

\[
\frac{x^2 - x - 6}{x^2 - 9} = \frac{(x - 3)(x + 2)}{(x - 3)(x + 3)} = \frac{(x + 2)}{(x + 3)}
\]

25. Answer: D) 11m by 16m

Content Area: Word problems, Geometry formulas, Equation solving

To solve a word problem we need to translate it into an equation with variables. For this problem, the equation comes from the formula for the perimeter of a rectangle: \(P = 2l + 2w \). We also know the relationship between the width and the length: \(w = l - 5 \) To solve the problem we substitute the known quantities into the formula and solve the equation.

- \(P = 2l + 2w \)
- \(P = 2l + 2(16) \) Distribute the 2
- \(54 = 2l + 2l - 10 \) Add like terms
- \(54 = 4l - 10 \) Add 10 to each side
- \(64 = 4l \) Divide both sides by 4
- \(16 = l \) Substitute into \(w = l - 5 \)
- \(w = 16 - 5 \)
- \(w = 11 \)
26. Answer: B) \(2a^2 + 3a - 9\)

Content Area: Multiplying polynomials

When you multiply two binomials together (like this problem) you should remember the FOIL method. This is a way of making sure that you find all of the products. It stands for First, Outer, Inner and Last. After you find the four products add any like terms to find the final answer.

\[
(2a - 3)(a + 3) = \\
F \quad O \quad I \quad L \\
2a \cdot a + 2a \cdot 3 - 3 \cdot a - 3 \cdot 3 = \\
2a^2 + 6a - 3a - 9 = \\
2a^2 + 3a - 9
\]

27. Answer: A) \((-6, 3)\)

Content Area: Solving quadratics, factoring

To solve a quadratic equation we need to get it in standard form \(ax^2 + bx + c = 0\), so subtract the 18 from both sides. Next we need to factor the expression. Remember, quadratics usually factor as two binomials and we can check our factoring by multiplying using the FOIL method to see that we haven’t changed the equation. We can then set each factor to zero and then solve to find our two solutions.

\[
x^2 + 3x = 18 \\
x^2 + 3x - 18 = 0 \\
(x + 6)(x - 3) = 0 \\
x + 6 = 0 \quad x - 3 = 0 \\
x = -6 \quad x = 3
\]

28. Answer: C) \(x^2 + 2x + 6\)

Content Area: Combining like terms

When you are asked to find the sum, it means to add polynomials, and the most important thing is to remember that you can only add terms that have the same variable. These are called like terms. We start this problem by grouping all of the like terms together in order: \(x^2, x, \text{constant}\). Make sure to keep any negatives with the appropriate term. We then combine the like terms by adding their coefficients.

\[
3x + 2 + 4 - x + x^2 = \\
x^2 + 3x - x + 2 + 4 = \\
x^2 + 2x + 6
\]

29. Answer: C) \(\{x \mid x > \frac{15}{8}\}\)

Content Area: Solving inequalities

When solving an inequality, we can treat it much like an equation. We can add or subtract quantities from both sides, and we can multiply and divide by a positive number on both sides without changing the answer. One difference between inequalities and equations is if we multiply or divide by a negative number we have to change the direction of the inequality. In this example we subtract and divide both sides to get the variable alone.

\[
-3(x - 2) < x - \frac{3}{2} \quad -4x < -\frac{3}{2} - 6 \\
-3x + 6 < x - \frac{3}{2} \quad -4x < -\frac{3}{2} - \frac{12}{2} = -\frac{15}{2} \\
-x \quad -x \quad -4x < -\frac{15}{2} \\
-4x + 6 < -\frac{3}{2} \quad \frac{4}{(-4)} \div (-4) \\
-6 \quad -6 \quad x > \frac{15}{8}
\]
30. **Answer:** A) $8\sqrt{3}$

Content Area: Adding and Simplifying Radicals

To add radicals, we must simplify them first. To simplify, factor the numbers under the radical, then apply the radical to each perfect square like 25 or 9. After they are simplified, we can see which terms have the same radical and add them by adding their coefficients.

\[
\sqrt{75} + \sqrt{27} = \sqrt{25 \cdot 3} + \sqrt{9 \cdot 3} = 5\sqrt{3} + 3\sqrt{3} = 8\sqrt{3}
\]

31. **Answer:** D) 32

Content Area: Rational Exponents

When evaluating rational exponents, it is often helpful to convert the exponent to a radical. To do this you need to know that the denominator tells you the index of the radical and the numerator tells you the exponent to raise the expression to. It is usually best to evaluate the radical first, and then apply the exponent, but you can do it in either order.

\[
4^{\frac{5}{2}} = \left(\frac{2}{\sqrt{4}} \right)^5 = (2)^5 = 32
\]

32. **Answer:** D)

Content Area: Lines and slopes

To find the slope of a line, we need to look at the ratio of vertical change to horizontal change between any two points. On this graph the line goes through the point $(0, -1)$ and $(2, 0)$ so to find the slope:

\[
slope = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - (-1)}{2 - 0} = \frac{1}{2}
\]

33. **Answer:** A) $\frac{3x^2 - 2y}{xy}$

Content Area: Rational Expressions

To add rational expressions we need a common denominator which in this case is xy. We create the common denominator by multiplying the top and bottom of each expression by the same quantity, then we add or subtract the numerators.

\[
\frac{3x}{y} - \frac{2}{x} = \frac{3x \cdot x - 2 \cdot y}{xy} = \frac{3x^2 - 2y}{xy}
\]

**\[
\frac{3x^2}{xy} - \frac{2y}{xy} = \frac{3x^2 - 2y}{xy}
\]**
34. Answer: B) 40°, 140°

To solve this problem you need to know that supplementary angles add up to 180 degrees. (Complementary angles add up to 90 degrees.) Using this information you can create an equation that represents the information. If we let x represent the smaller angle can solve the following equation. Once we know the value of x we can find the other angle.

\[
\begin{align*}
(x) + (3x + 20) &= 180 \\
4x + 20 &= 180 \\
4x &= 160 \\
x &= 40
\end{align*}
\]

35. Answer: C) \(x - 2x^2 \)

To translate a phrase into an expression you have to know which words turn into which symbols. In this problem “difference” means to subtract, “a number” means a variable x, “twice” means to multiply by 2, and “the square of a number” means \(x^2 \). Put it all together and you have \(x - 2x^2 \).
ACCUPLACER Advanced Algebra and Functions
Sample Questions

The Next-Generation Advanced Algebra and Functions placement test is a computer adaptive assessment of test-takers’ ability for selected mathematics content. Questions will focus on a range of topics, including a variety of equations and functions, including linear, quadratic, rational, radical, polynomial, and exponential. Questions will also delve into some geometry and trigonometry concepts. In addition, questions may assess a student’s math ability via computational or fluency skills, conceptual understanding, or the capacity to apply mathematics presented in a context. All questions are multiple choice in format and appear discretely (stand alone) across the assessment. The following knowledge and skill categories are assessed:

- Linear equations
- Linear applications
- Factoring
- Quadratics
- Functions
- Radical and rational equations
- Polynomial equations
- Exponential and logarithmic equations
- Geometry concepts
- Trigonometry
Sample Questions
Choose the best answer. If necessary, use the paper you were given.

1. Function g is defined by $g(x) = 3(x + 8)$. What is the value of $g(12)$?

 A. -4
 B. 20
 C. 44
 D. 60

2. Which of the following expressions is equivalent to $(x + 7)(x^2 - 3x + 2)$?

 A. $x^3 - 3x^2 + 2x + 14$
 B. $x^3 + 4x^2 - 19x + 14$
 C. $x^3 - 3x + 14$
 D. $x^2 - 2x + 9$

3. The surface area of a right rectangular prism can be found by finding the sum of the area of each of the faces of the prism. What is the surface area of a right rectangular prism with length 4 centimeters (cm), width 9 cm, and height 3 cm? (Area of a rectangle is equal to length times width.)

 A. 75 cm2
 B. 108 cm2
 C. 120 cm2
 D. 150 cm2

4. Which of the following is an equation of the line that passes through the point $(0, 0)$ and is perpendicular to the line shown above?

 A. $y = \frac{5}{4}x$
 B. $y = \frac{5}{4}x + 3$
 C. $y = -\frac{4}{5}x$
 D. $y = -\frac{4}{5}x + 3$

5. The graph above shows the cost, in dollars, of apples as a function of the number of pounds of apples purchased at a particular grocery store. The equation above defines the cost C, in dollars, for p pounds of pears at the same store. Which of the following statements accurately compares the cost per pound of apples and the cost per pound of pears at this store?

 A. Apples cost approximately $0.07 less per pound than pears do.
 B. Apples cost approximately $0.04 less per pound than pears do.
 C. Apples cost approximately $0.73 less per pound than pears do.
 D. Apples cost approximately $0.62 more per pound than pears do.
6. Which of the following is the graph of a function where \(y = f(x) \)?

A.

```
\[
\begin{array}{c}
\text{\textbf{y}} \\
\text{\textbf{x}}
\end{array}
\]
```

B.

```
\[
\begin{array}{c}
\text{\textbf{y}} \\
\text{\textbf{x}}
\end{array}
\]
```

C.

```
\[
\begin{array}{c}
\text{\textbf{y}} \\
\text{\textbf{x}}
\end{array}
\]
```

D.

```
\[
\begin{array}{c}
\text{\textbf{y}} \\
\text{\textbf{x}}
\end{array}
\]
```

7. Which of the following expressions is equivalent to \(3x^2 + 6x - 24 \)?

A. \(3(x + 2)(x - 4) \)
B. \(3(x - 2)(x + 4) \)
C. \((x + 6)(x - 12) \)
D. \((x - 6)(x + 12) \)

8. A biologist puts an initial population of 500 bacteria into a growth plate. The population is expected to double every 4 hours. Which of the following equations gives the expected number of bacteria, \(n \), after \(x \) days? (24 hours = 1 day)

A. \(n = 500(2)^x \)
B. \(n = 500(2)^{4x} \)
C. \(n = 500(6)^x \)
D. \(n = 500(6)^{2x} \)

9. \(x^2 + 5x - 9 = 5 \)

Which of the following values of \(x \) satisfies the equation above?

A. 7
B. 3
C. -2
D. -7

10. The graph of \(y = f(x) \) is shown in the \(xy \)-plane below.

```
\[
\begin{array}{c}
\text{\textbf{y}} \\
\text{\textbf{x}}
\end{array}
\]
```

Which of the following equations could define \(f(x) \)?

A. \(f(x) = x^2 - 2x - 8 \)
B. \(f(x) = -x^2 + 2x - 8 \)
C. \(f(x) = (x - 2)(x + 4) \)
D. \(f(x) = -(x - 1)^2 - 9 \)

11. Which of the following best describes the range of \(y = -2x^4 + 7 \)?

A. \(y \leq -2 \)
B. \(y \geq 7 \)
C. \(y \geq 7 \)
D. All real numbers
12. For which of the following equations is \(x = 6\) the only solution?
 A. \((6x)^2 = 0\)
 B. \((x - 6)^2 = 0\)
 C. \((x + 6)^2 = 0\)
 D. \((x - 6)(x + 6) = 0\)

13. If \(f(x) = x^2 + 3x + 1\), what is \(f(x + 2)\)?
 A. \(x^2 + 3x + 3\)
 B. \((x + 2)^2 + 3(x + 2) + 1\)
 C. \((x + 2)(x^2 + 3x + 1)\)
 D. \(x^2 + 3x + 9\)

14. What, if any, is a real solution to \(\sqrt{5x + 1} + 9 = 3\)?
 A. \(-\frac{1}{5}\)
 B. 7
 C. \(\frac{143}{5}\)
 D. There is no real solution.

15. If \(x \neq -2\) and \(x \neq -\frac{3}{2}\), what is the solution to \(\frac{5}{x + 2} = \frac{x}{2x - 3}\)?
 A. 3 and 5
 B. 2 and \(-\frac{3}{2}\)
 C. \(-2\) and \(\frac{3}{2}\)
 D. \(-3\) and \(-5\)

16. \[\text{Triangle } JKL \text{ and triangle } PQR \text{ are shown above. If } \angle J \text{ is congruent to } \angle P, \text{ which of the following must be true in order to prove that triangles } JKL \text{ and } PQR \text{ are congruent?}\]
 A. \(\angle L \equiv \angle R \text{ and } JL = PR\)
 B. \(KL = QR \text{ and } PR = JL\)
 C. \(JK = PQ \text{ and } KL = QR\)
 D. \(\angle K \equiv \angle Q \text{ and } \angle L \equiv \angle R\)

17. In the function \(f(x) = a(x + 2)(x - 3)^b\), \(a\) and \(b\) are both integer constants and \(b\) is positive. If the end behavior of the graph of \(y = f(x)\) is positive for both very large negative values of \(x\) and very large positive values of \(x\), what is true about \(a\) and \(b\)?
 A. \(a\) is negative, and \(b\) is even.
 B. \(a\) is positive, and \(b\) is even.
 C. \(a\) is negative, and \(b\) is odd.
 D. \(a\) is positive, and \(b\) is odd.

18. Which of the following equations is equivalent to \(2^{5x} = 7\)?
 A. \(x = \log_2 \left(\frac{7}{5}\right)\)
 B. \(x = \frac{\log_2 7}{5}\)
 C. \(x = \frac{\log_2 5}{5}\)
 D. \(x = \frac{\log_2 5}{2}\)

19. If \(x > 0\) and \(y > 0\), which of the following expressions is equivalent to \(\frac{x - y}{\sqrt{x} - \sqrt{y}}\)?
 A. \(\frac{x - y}{\sqrt{x} - \sqrt{y}}\)
 B. \(\sqrt{x} - \sqrt{y}\)
 C. \(\sqrt{x} + \sqrt{y}\)
 D. \(x\sqrt{x} + y\sqrt{y}\)

20. In triangle \(ABC\), angle \(C\) is a right angle. If \(\cos A = \frac{5}{8}\), what is the value of \(\cos B\)?
 A. \(\frac{3}{8}\)
 B. \(\frac{5}{8}\)
 C. \(\frac{\sqrt{39}}{8}\)
 D. \(\frac{\sqrt{89}}{8}\)
Rationales

1. **Choice D is correct.** The value of \(g(12) \) can be found by substituting 12 for \(x \) in the equation for \(g(x) \). This yields \(g(12) = 3(12 + 8) \), which is equivalent to 3(20) or 60. Choice A is incorrect. This answer represents the value of \(x \) in the equation \(12 = 3(x + 8) \). Choice B is incorrect. This answer represents the value of the expression in parentheses. Choice C is incorrect. This answer is a result of incorrectly distributing the 3 through the expression in parentheses: \(g(12) = 3(12) + 8 \).

2. **Choice A is correct.** The slopes of perpendicular lines are negative reciprocals of each other. The slope of the line in the graph is \(-\frac{4}{5}\). The negative reciprocal of \(-\frac{4}{5}\) is \(\frac{5}{4}\). A line that passes through the point (0, 0) has a \(y \)-intercept of 0. Therefore, the equation \(y = \frac{5}{4}x + 0 \), or \(y = \frac{5}{4}x \), is correct. Choice B is incorrect because it is an equation of a line that is perpendicular to the line shown, but it does not pass through the origin. Choice C is incorrect because this equation is parallel to the line shown, not perpendicular. Choice D is incorrect because it is the equation of the line shown in the graph.

3. **Choice D is correct.** The surface area of the rectangular prism is the total area of each of the faces of the prism and can be written as 2(length \(\times \) width) + 2(height \(\times \) width) + 2(length \(\times \) height), which is 2(4 cm \(\times \) 9 cm) + 2(3 cm \(\times \) 9 cm) + 2(4 cm \(\times \) 3 cm), or 150 cm\(^2\). Choice A is incorrect because it is half the surface area of the prism. Choice B is incorrect because it is the volume of the prism. Choice C is incorrect because it is 30 units less than the surface area of the prism described.

4. **Choice B is correct.** Using the distribution property, the given expression can be rewritten as \(x(x^2) + x(-3x) + x(2) + 7(x^2) + 7(-3x) + 7(2) \). Further simplifying results in \(x^3 - 3x^2 + 2x + 7x^2 - 21x + 14 \). Finally, adding like terms yields \(x^3 + 4x^2 - 19x + 14 \). Choices A, C, and D are incorrect because they each result from errors made when performing the necessary distribution and adding like terms.
5. **Choice A is correct.** The cost per pound of apples can be determined by the slope of the graph as about $1.33 per pound. The cost per pound of pears can be determined by the slope of the line defined by the equation \(C = \frac{7}{5}p \). The slope of the line defined by \(C \) is \(\frac{7}{5} \), so the cost per pound of pears is $1.40. Therefore, the apples cost approximately $0.07 less per pound than pears do. Choice B is incorrect. This is the result of misreading the cost per pound of apples as $0.67 and the cost per pound of pears as $0.71 and then finding the difference between the two values. Choice C is incorrect. This is the result of misreading the cost per pound of apples from the graph as $0.67 and then subtracting the cost per pound of pears, $1.40. Choice D is incorrect. This is the result of misreading the cost per pound of pears as $0.71 and then subtracting this value from the cost per pound of apples, $1.33.

6. **Choice C is correct.** A function has one output for each input. Each \(x \)-value on this graph corresponds to only one \(y \)-value. Choices A, B, and D are incorrect because each has \(x \)-values that correspond to more than one \(y \)-value.

7. **Choice B is correct.** The expression \(3(x - 2)(x + 4) \) can be expanded by first multiplying \((x - 2) \) by 3 to get \(3x - 6 \) and then multiplying \((3x - 6) \) by \((x + 4) \) to get \(3x^2 + 6x - 24 \). Choice A is incorrect because it is equivalent to \(3x^2 - 6x - 24 \). Choice C is incorrect because it is equivalent to \(x^2 - 6x - 72 \). Choice D is incorrect because it is equivalent to \(x^2 + 6x - 72 \).

8. **Choice B is correct.** An exponential function can be written in the form \(y = ab^t \) where \(a \) is the initial amount, \(b \) is the growth factor, and \(t \) is the time. In the scenario described, the variable \(y \) can be substituted with \(n \), the total number of bacteria, and the initial amount is given as 500, which yields \(n = 500b^t \). The growth factor is 2 because the population is described as being expected to double, which gives the equation \(n = 500(2)^t \). The population is expected to double every 4 hours, so for the time to be \(x \) days, \(x \) must be multiplied by 6 (the number of 4-hour periods in 1 day). This gives the final equation \(n = 500(2)^{6x} \). Choices A, C, and D are incorrect. Choice A does not account for the six 4-hour periods per day, choice C uses the number of time periods per day as the growth rate, and choice D uses the number of time periods per day as the growth rate and multiplies the exponent by the actual growth rate.

9. **Choice D is correct.** Subtracting 5 from both sides of the equation gives \(x^2 + 5x - 14 = 0 \). The left-hand side of the equation can be factored, giving \((x + 7)(x - 2) = 0 \). Therefore, the solutions to the quadratic equation are \(x = -7 \) and \(x = 2 \). Choice A is incorrect because \(7^2 + 5(7) - 9 \) is not equal to 5. Choice B is incorrect because \(3^2 + 5(3) - 9 \) is not equal to 5. Choice C is incorrect because \((-2)^2 + 5(-2) - 9 \) is not equal to 5.
10. **Choice A is correct.** The graph of \(y = f(x) \) crosses the \(x \)-axis at \(x = -2 \) and \(x = 4 \), crosses the \(y \)-axis at \(y = 8 \), and has its vertex at the point \((1, -9)\). Therefore, the ordered pairs \((-2, 0)\), \((4, 0)\), \((0, -8)\), and \((1, -9)\) must satisfy the equation for \(f(x) \). Furthermore, because the graph opens upward, the equation defining \(f(x) \) must have a positive leading coefficient. All of these conditions are met by the equation \(f(x) = x^2 - 2x - 8 \). Choice B is incorrect. The points \((-2, 0)\), \((4, 0)\), \((0, -8)\), and \((1, -9)\), which are easily identified on the graph of \(y = f(x) \), do not all satisfy the equation \(f(x) = -x^2 + 2x - 8 \); only \((0, -8)\) does. Therefore, \(f(x) = -x^2 + 2x - 8 \) cannot define the function graphed. Furthermore, because the graph opens upward, the equation defining \(y = f(x) \) must have a positive leading coefficient, which \(f(x) = -x^2 + 2x - 8 \) does not. Choice C is incorrect. The points \((-2, 0)\), \((4, 0)\), \((0, -8)\), and \((1, -9)\), which are easily identified on the graph of \(y = f(x) \), do not all satisfy the equation \(f(x) = (x - 2)(x + 4) \); only \((0, -8)\) does. Therefore, \(f(x) = (x - 2)(x + 4) \) cannot define the function graphed. Choice D is incorrect. Though the vertex \((1, -9)\) does satisfy the equation \(f(x) = -(x - 1)^2 - 9 \), the points \((-2, 0)\), \((4, 0)\), and \((0, -8)\) do not. Therefore, \(f(x) = -(x - 1)^2 - 9 \) cannot define the function graphed. Furthermore, because the graph opens upward, the equation defining \(y = f(x) \) must have a positive leading coefficient, which \(f(x) = -(x - 1)^2 - 9 \) does not.

11. **Choice C is correct.** The range of a function describes the set of all outputs, \(y \), that satisfy the equation defining the function. In the \(xy \)-plane, the graph of \(y = -2x^4 + 7 \) is a U-shaped graph that opens downward with its vertex at \((0, 7)\). Because the graph opens downward, the vertex indicates that the maximum value of \(y \) is 7. Therefore, the range of the function defined by \(y = -2x^4 + 7 \) is the set of \(y \)-values less than or equal to 7. Choices A, B, and D are incorrect in that choice A doesn’t cover the entire range, while choices B and D include values that aren’t part of the range.

12. **Choice B is correct.** The only value of \(x \) that satisfies the equation \((x - 6)^2 = 0\) is 6. Choice A is incorrect because \(x = 0 \) is the only solution to the equation \((6x)^2 = 0\). Choice C is incorrect because \(x = -6 \) is the only solution to the equation \((x + 6)^2 = 0\). Choice D is incorrect because although \(x = 6 \) is a solution to the equation \((x - 6)(x + 6) = 0\), \(x = -6 \) is another solution to the equation.

13. **Choice B is correct.** Substituting \(x + 2 \) for \(x \) in the original function gives \(f(x + 2) = (x + 2)^2 + 3(x + 2) + 1 \). Choice A is incorrect. This is \(f(x) + 2 \). Choice C is incorrect. This is \((x + 2)f(x) \). Choice D is incorrect. This is \(f(x) + 2^3 \).

14. **Choice D is correct.** Subtracting 9 from both sides of the equation yields \(5x + 1 = -6 \), and there are no real values of \(x \) that result in the square root of a number being negative, so the equation has no real solution. Choices A and C are incorrect due to computational errors in solving for \(x \) and not checking the solution in the original equation. Choice B is incorrect because it is the extraneous solution to the equation.
15. **Choice A is correct.** To solve the equation for \(x \), cross multiply to yield \(x(x + 2) = 5(2x - 3) \). Simplifying both sides of the new equation results in \(x^2 + 2x = 10x - 15 \). Next, subtract 10x from both sides of the equation and add 15 to both sides of the equation to yield \(x^2 - 8x + 15 = 0 \). By factoring the left-hand side, the equation can be rewritten in the form \((x - 3)(x - 5) = 0\). It follows, therefore, that \(x = 3 \) and \(x = 5 \). Choices B, C, and D are possible results from mathematical errors when solving the equation for \(x \).

16. **Choice A is correct.** If two angles and the included side of one triangle are congruent to corresponding parts of another triangle, the triangles are congruent. Since angles \(J \) and \(L \) are congruent to angles \(P \) and \(R \), respectively, and the side lengths between each pair of angles, \(JL \) and \(PR \), are also equal, then it can be proven that triangles \(JKL \) and \(PQR \) are congruent. Choices B and C are incorrect because only when two sides and the included angle of one triangle are congruent to corresponding parts of another triangle can the triangles be proven to be congruent, and angles \(J \) and \(P \) are not included within the corresponding pairs of sides given. Further, side-side-angle congruence works only for right triangles, and it is not given that triangles \(JKL \) and \(PQR \) are right triangles. Choice D is incorrect because the triangles can only be proven to be similar (not congruent) if all three sets of corresponding angles are congruent.

17. **Choice D is correct.** A polynomial function of even degree with a positive leading coefficient will have positive end behavior for both very large negative values of \(x \) and very large positive values of \(x \). For a polynomial function in the form \(f(x) = a(x + 2)(x - 3)^b \) to be of even degree with a positive leading coefficient, \(a \) must be positive and \(b \) must be odd. Choice A is incorrect. If \(a \) is negative and \(b \) is even, the polynomial function will be of odd degree, with a negative leading coefficient. This results in positive end behavior for very large negative values of \(x \) and negative end behavior for very large positive values of \(x \). Choice B is incorrect. If \(a \) is positive and \(b \) is even, the polynomial function will be of odd degree with a positive leading coefficient. This results in negative end behavior for very large negative values of \(x \) and positive end behavior for very large positive values of \(x \). Choice C is incorrect. If \(a \) is negative and \(b \) is odd, the polynomial function will be of even degree with a negative leading coefficient. This results in negative end behavior on both sides of the function.

18. **Choice B is correct.** By definition, if \((b)^x = y \), where \(b > 0 \) and \(b \neq 1 \), then \(x = \log_b y \). Therefore, the given equation \(2^{5x} = 7 \) can be rewritten in the form \(\log_2 7 = 5x \). Next, solving for \(x \) by dividing both sides of the equation by 5 yields \(\frac{\log_2 7}{5} = x \). Choices A, C, and D are incorrect because they are the result of misapplying the identity, which states that if \((b)^x = y \), where \(b > 0 \) and \(b \neq 1 \), then \(x = \log_b y \)
19. **Choice C is correct.** Since \(x > 0 \) and \(y > 0 \), \(x \) can be rewritten as \((\sqrt{x})^2\) and \(y \) can be rewritten as \((\sqrt{y})^2\). It follows, then, that \(\frac{x - y}{\sqrt{x} - \sqrt{y}} \) can be rewritten as \(\frac{(\sqrt{x})^2 - (\sqrt{y})^2}{\sqrt{x} - \sqrt{y}} \). Because the numerator is a difference of two squares, it can be factored as \(\frac{(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})}{\sqrt{x} - \sqrt{y}} \). Finally, dividing the common factors of \((\sqrt{x} - \sqrt{y})\) in the numerator and denominator yields \(\sqrt{x} + \sqrt{y} \). Alternatively, if \(\frac{x - y}{\sqrt{x} - \sqrt{y}} \) is multiplied by \(\frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} + \sqrt{y}} \), which is equal to 1, and therefore does not change the value of the original expression, the result is \(\frac{(x - y)(\sqrt{x} + \sqrt{y})}{(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})} \), which is equivalent to \(\frac{x\sqrt{x} + x\sqrt{y} - y\sqrt{x} - y\sqrt{y}}{x - \sqrt{xy} + \sqrt{xy} - y} \). This can be rewritten as \(\frac{(x - y)(\sqrt{x} + \sqrt{y})}{(x - y)} \), which can be simplified to \(\sqrt{x} + \sqrt{y} \). Choice A is incorrect and may be the result of incorrectly combining \(\sqrt{x} - \sqrt{y} \). Choice B is incorrect because it is equivalent to \(\frac{x - y}{\sqrt{x} - \sqrt{y}} \). Choice D is incorrect and may be the result of misusing the conjugate strategy. Instead of multiplying the numerator and denominator by the quantity \((\sqrt{x} + \sqrt{y})\), they may have been multiplied by \((\sqrt{x} - \sqrt{y})\) and then improperly distributed.

20. **Choice C is correct.** If triangle \(ABC \) is defined as a right triangle, where angle \(C \) is the right angle, then the cosine of angle \(A \) (\(\cos A \)) is defined as the ratio of the length of the side adjacent to angle \(A \) to the length of the hypotenuse. Since this ratio is defined as \(\frac{5}{8} \), then the length of the side opposite angle \(A \), which is also the side adjacent to angle \(B \), can be derived from the Pythagorean theorem: \(a^2 + 5^2 = 8^2 \), where \(a \) represents the length of the side opposite angle \(A \). Solving for \(a \) yields \(a^2 = 64 - 25 = 39 \), so \(a = \sqrt{39} \). Then, to determine the cosine of angle \(B \), use the same ratio in relation to angle \(B \): \(\cos B = \frac{\text{the length of the side adjacent to angle } B}{\text{the length of the hypotenuse}} = \frac{\sqrt{39}}{8} \). Choice A and D are incorrect and likely results from an error in finding the length of side \(\overline{CB} \). Choice B is incorrect and is the value of \(\cos A \) and \(\sin B \).
Calculus Readiness Practice Test

Function Questions

1. If \(f(m) = m^3 - 2m^2 + m \), then \(f(-2) = \)
 a) -2
b) 14
c) -16
d) -18
e) None of these

2. If \(r(t) = 2t^2 - 7t - 4 \), then \(r(-1) = \)
 a) 5
b) -13
c) -9
d) -5
e) None of these

3. If \(f(x) = 2x + 3 \) and \(g(x) = \frac{x}{x-1} \), then \(g(f(2)) = \)
 a) 7
b) \(\frac{3}{4} \)
c) \(\frac{4}{3} \)
d) \(\frac{5}{4} \)
e) \(\frac{7}{6} \)
4. If \(f(x) = \frac{x+1}{x} \) and \(g(x) = x^2 + 1 \), then \(g(f(1)) = \)

a) \(\frac{3}{2} \)

b) \(\frac{2}{3} \)

c) 5

d) 2

e) None of these

5. Let \(f(x) = \sqrt{2x-3} \). The domain (set of inputs) of the function \(f \) is the set of all numbers \(x \) such that

a) \(x \geq 0 \)

b) \(x > 2 \)

c) \(x \geq \frac{3}{2} \)

d) \(x \geq \frac{2}{3} \)

e) None of these

6. Let \(f(x) = \frac{1}{\sqrt{3-x}} \). The domain (set of inputs) of the functions is the set of all numbers \(x \) such that

a) \(x > 3 \)

b) \(x > 0 \)

c) \(x \leq -3 \)

d) \(x < -3 \)

e) \(x < 3 \)
Logarithms Questions

7. For $x > 0$, $\log(10x(x+1)) =$
 a) $10 \log(x) \log(x+1)$
 b) $1 + \log(x) + \log(x+1)$
 c) $\log(10x) - \log(x+1)$
 d) $10 - \log(x) - \log(x+1)$
 e) None of these

8. For $t > 0$, $\log\left(\frac{(t+1)^2}{t}\right) =$
 a) $\frac{\log(t+1)^2}{\log(t)}$
 b) $\frac{2 \log(t+1)}{\log(t)}$
 c) $\log\left(\frac{1}{3}\right)$
 d) $2 \log(t+1) + \log(t)$
 e) $2 \log(t+1) - \log(t)$

9. If $x = \log_3 50$, then x is a number such that
 a) $1 < x < 2$
 b) $2 < x < 3$
 c) $3 < x < 4$
 d) $4 < x < 5$
 e) $x > 5$
10. If \(\log_2 a = 2.1 \) and \(\log_2 b = 1.5 \), then \(\log_2 \frac{2a}{b} = \)

a) can't be determined from the given information
b) 0.6
c) 2.6
d) 1.6
e) 3.6

11. If \(\log_2 (3x - 5) = 3 \), then \(x = \)

a) \(\frac{8}{3} \)
b) \(\frac{2}{3} \)
c) \(\frac{1}{3} \)
d) \(\frac{14}{3} \)
e) \(\frac{13}{3} \)

12. If \(\log_3 (2x - 1) = 2 \), then \(x = \)

a) 5
b) \(\frac{3}{2} \)
c) \(\frac{7}{2} \)
d) 3
e) \(\frac{1}{2} \)
Trigonometry Questions

13. In the figure here (not drawn to scale), what is the value of $\tan A$?

a) $\frac{3}{5}$
b) $\frac{4}{5}$
c) $\frac{5}{3}$
d) $\frac{5}{4}$
e) $\frac{3}{4}$

14. If θ is an acute angle with $\sin \theta = \frac{2}{3}$, what is the value of $\cos \theta$?

a) $\frac{1}{3}$
b) $\frac{5}{3}$
c) $\frac{\sqrt{7}}{3}$
d) $\frac{\sqrt{5}}{3}$
e) $\frac{\sqrt{2}}{3}$

15. What is the value of $\sin \left(\frac{\pi}{2}\right) + \cos(\pi)$?

a) -1
b) 0
c) 1
d) 2
e) cannot be determined without a calculator
16. What is the value of $\sin^2(2) + \cos^2(2)$?
 a) 4
 b) 0
 c) 1
 d) $\frac{\sqrt{2}}{2}$
 e) None of these

17. If $\sin(x) = \frac{1}{2}$ with $0 < x < \frac{\pi}{2}$, then $\cos(2x) =$
 a) $\frac{\sqrt{3}}{2}$
 b) 0
 c) $\frac{1}{2}$
 d) 1
 e) None of these

18. If $\sin(x) = \frac{\sqrt{2}}{2}$ with $0 < x < \frac{\pi}{2}$, what is the value of $\tan(x)$?
 a) $\sqrt{3}$
 b) $\frac{1}{\sqrt{3}}$
 c) 1
 d) $\frac{2}{\sqrt{2}}$
 e) None of these
19. The curve shown here could be a portion of the graph of \(y = \)
 a) \(\sin(x) \)
 b) \(\cos(x) \)
 c) \(-\sin(x) \)
 d) \(\cos(2x) \)
 e) \(\sin(2x) \)

20. The curve above could be a portion of the graph of \(y = \)
 a) \(\cos x \)
 b) \(\sin x \)
 c) \(-\cos x \)
 d) \(-\sin x \)
 e) none of these
Accuplacer Calculus Readiness Answer Key

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>A</td>
<td>E</td>
<td>C</td>
<td>C</td>
<td>E</td>
<td>B</td>
<td>E</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td>A</td>
<td>E</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>E</td>
<td>A</td>
</tr>
</tbody>
</table>